







*Le determinazione della resistenza è ancora necessaria per impostare la prima linea di trattamento?* 

**Stefano Rusconi** 

Divisione Clinicizzata di Malattie Infettive DIBIC "Luigi Sacco" Università degli Studi *Milano* 

GIORNATE INFETTIVOLOGICHE "LUIGI SACCO" 14-15 giugno 2018

### i miei conflitti di interesse

### BMS, Gilead, Janssen, MSD, ViiV/GSK

### **ARV potency versus genetic barrier to resistance**



DS Clutter et al. Infection, Genetics and Evolution 2016

### **Genetic Barrier to Resistance**



#### Libre JM et al. AIDS Rev. 2015

### Global HIV-1 transmitted drug resistance in the INSIGHT Strategic Timing of AntiRetroviral Treatment (START) trial

JD Baxter,<sup>1</sup> D Dunn,<sup>2</sup> E White,<sup>2</sup> S Sharma,<sup>3</sup> AM Geretti,<sup>4</sup> MJ Kozal,<sup>5</sup> MA Johnson,<sup>6</sup> S Jacoby,<sup>7</sup> JM Llibre<sup>®</sup> and J Lundgren<sup>9</sup> for the International Network for Strategic Initiatives in Global HIV Trials (INSIGHT) START Study Group <sup>1</sup>Cooper University Hospital/Cooper Medical School of Rowan University, Camden, NJ, USA, <sup>2</sup>Medical Research Council Clinical Trials Unit at University College London, London, UK, <sup>3</sup>Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA, <sup>4</sup>Institute of Infection and Global Health, University of Liverpool, Liverpool, UK, <sup>5</sup>Yale University School of Medicine and Veterans Affairs Connecticut Healthcare System, New Haven, CT, USA, <sup>6</sup>The Royal Free Hospital and University College London, London, UK, <sup>7</sup>The Kirby Institute, University of New South Wales, Sydney, Australia, <sup>8</sup>Univ Hospital Germans Trias i Pujol/'Lluita contra la SIDA' Foundation, Barcelona, Spain and <sup>9</sup>Copenhagen HIV Programme, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

#### Objectives

HIV-1 transmitted drug resistance (TDR) in treatment-naïve individuals is a well-described phenomenon. Baseline genotypic resistance testing is considered standard of care in most developed areas of the world. The aim of this analysis was to characterize HIV-1 TDR and the use of resistance testing in START trial participants.

#### Methods

In the Strategic Timing of AntiRetroviral Treatment (START) trial, baseline genotypic resistance testing results were collected at study entry and analysed centrally to determine the prevalence of TDR in the study population. Resistance was based on a modified 2009 World Health Organization definition to reflect newer resistance mutations.

#### Results

Baseline resistance testing was available in **1946** study participants. Higher rates of testing occurred in Europe (86.7%), the USA (81.3%) and Australia (89.9%) as compared with Asia (22.2%), South America (1.8%) and Africa (0.1%). The overall prevalence of TDR was 10.1%, more commonly to nonnucleoside reverse transcriptase inhibitors (4.5%) and nucleoside reverse transcriptase inhibitors (4.5%) and nucleoside reverse transcriptase inhibitors (2.8%). The most frequent TDR mutations observed were M41L, D67N/G/E, T215F/Y/I/S/C/D/E/V/N, 219Q/E/N/R, K103N/S, and G190A/S/E in reverse transcriptase, and M46I/L and L90M in protease. By country, the prevalence of TDR was highest in Australia (17.5%), France (16.7%), the USA (12.6%) and Spain (12.6%). No participant characteristics were identified as predictors of the presence of TDR.

#### Conclusions

START participants enrolled in resource-rich areas of the world were more likely to have baseline resistance testing. In Europe, the USA and Australia, TDR prevalence rates varied by country.

Keywords: antiretroviral therapy, drug resistance, HIV

Accepted 21 November 2014



### Pretreatment HIV-drug resistance in Mexico and its impact on the effectiveness of first-line antiretroviral therapy: a nationally representative 2015 WHO survey

Santiago Ávila-Ríos, Claudia García-Morales, Margarita Matías-Florentino, Karla A Romero-Mora, Daniela Tapia-Trejo, Verónica S Quiroz-Morales, Helena Reyes-Gopar, Hezhao Ji, Paul Sandstrom, Jesús Casillas-Rodríquez, Juan Sierra-Madero, Eddie A León-Juárez, Marisol Valenzuela-Lara, Carlos Magis-Rodríguez, Patricia Uribe-Zuñiga, Gustavo Reyes-Terán, for the HIVDR MexNet Group\*

#### Summary

Background WHO has developed a global HIV-drug resistance surveillance strategy, including assessment of Lancet HIV 2016; 3: e579-91 pretreatment HIV-drug resistance. We aimed to do a nationally representative survey of pretreatment HIV-drug resistance in Mexico using WHO-recommended methods.

Methods Among 161 Ministry of Health antiretroviral therapy (ART) clinics in Mexico, the largest, including 90% of ART initiators within the Ministry of Health (66 in total), were eligible for the survey. We used a probability-proportionalto-size design method to sample 25 clinics throughout the country. Consecutive ART-naive patients with HIV about to initiate treatment were invited to participate in the survey; individuals with previous exposure to ART were excluded. We assessed pretreatment HIV-drug resistance by Sanger sequencing and next-generation sequencing of viruses from plasma specimens from eligible participants with Stanford University HIV Drug Resistance Database methods. We obtained follow-up data for a median of 9.4 months (range 6-12) after enrolment. We investigated possible relations between demographic variables and pretreatment drug resistance with univariate and multivariate logistic regression.

Findings Between Feb 3 and July 30, 2015, we screened 288 patients in 25 clinics, from whom 264 provided successfully sequenced viruses with no evidence of current exposure to antiretroviral drugs. With the Sanger method, of these 264 participants, 41 (15.5%, 95% CI 11.4-20.5) had pretreatment resistance to any antiretroviral drug and 28 (10.6%, 7.2-15.0) had pretreatment resistance to non-nucleoside reverse transcriptase inhibitors (NNRTIs). At least low-level pretreatment resistance (Stanford penalty score ≥15) was noted in 13 (4 · 9%) of participants to efavirenz and in 23 (8 · 7%) to the combination tenofovir plus emtricitabine plus efavirenz. With next-generation sequencing, of 264 participants, 38 (14.4%, 95% CI 10.4-19.2) had pretreatment resistance to any antiretroviral drug and 26 (9.8%, 6.5-14.1) had pretreatment resistance to NNRTIs. After median follow-up of 8 months (IQR 6-5-9-4, range 5-11) after ART initiation, 97 (72%) of 135 NNRTI initiators achieved viral suppression (<50 copies per mL) compared with ten (40%) of 25 individuals who started with protease inhibitor-based regimens (p=0.0045). After multivariate regression considering pretreatment resistance and initial ART regimen as composite variables, people starting NNRTIs with pretreatment drug resistance achieved significantly lower viral suppression (odds ratio 0.24, 95% CI 0.07-0.74; p=0.014) than patients without NNRTI resistance.

Interpretation High levels of pretreatment drug resistance were noted in Mexico, and NNRTI pretreatment drug resistance significantly reduced the effectiveness of first-line ART regimens based on these drugs. Baseline HIVdrug resistance testing for initial ART follow-up and decision making should be considered.

Published Online September 14, 2016 http://dx.doi.org/10.1016/ 52352-3018(16)30119-9

See Comment page e553 \*Members listed at the end of the report

Centre for Research in Infectious Diseases. National Institute of Respiratory Diseases, Calzada de Tlalpan 4502, Mexico City, Mexico (S Ávila-Rios PhD, C García-Morales MSc. M Matias-Florentino BSc, K A Romero-Mora MD, D Tapia-Trejo BSc, VS Quiroz-Morales BSc, H Reyes-Gopar BSc, Prof G Reyes-Terán MD); National HIV and Retrovirology Laboratories at JC Wilt Infectious Diseases Research Center, Public Health Agency of Canada, Winnipeg, MB, Canada (H Ji PhD, P Sandstrom PhD); Condesa Specialised Clinic, General Benjamin Hill 24, Colonia Condesa, Mexico City, Mexico (| Casillas-Rodriguez MD); National Institute of Medical Sciences and Nutrition Salvador Zubirán, Colonia Sección XVI, Mexico City, Mexico

### HIV-1 drug resistance mutations emerging on darunavir therapy in PI-naive and -experienced patients in the UK

Kate El Bouzidi<sup>1,2\*</sup>, Ellen White<sup>3</sup>, Jean L. Mbisa<sup>4</sup>, Caroline A. Sabin<sup>1</sup>, Andrew N. Phillips<sup>1</sup>, Nicola Mackie<sup>5</sup>, Anton L. Pozniak<sup>6</sup>, Anna Tostevin<sup>3</sup>, Deenan Pillay<sup>2,7</sup> and David T. Dunn<sup>3</sup> on behalf of the UK HIV Drug Resistance Database<sup>†</sup> (UKHDRD) and the UK Collaborative HIV Cohort (UK CHIC) Study Steering Committees<sup>†</sup>

<sup>1</sup>Research Department of Infection and Population Health, University College London, London, UK; <sup>2</sup>Research Department of Infection, Division of Infection and Immunity, University College London, London, UK; <sup>3</sup>MRC Clinical Trials Unit at UCL, London, UK; <sup>4</sup>Virus Reference Department, Centre of Infections, Public Health England, London, UK; <sup>5</sup>Department of HIV Medicine, Imperial College Healthcare NHS Trust, London, UK; <sup>6</sup>Department of Medicine, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK; <sup>7</sup>Wellcome Trust Africa Centre for Health and Population Sciences, University of KwaZulu Natal, Mtubatuba, South Africa

\*Corresponding author. Research Department of Infection, Wing 3.3, Cruciform Building, Gower Street, London WC1E 6BT, UK. Tel: +44 203 108 0000; Fax: +44 203 108 2123; E-mail: k.elbouzidi@ucl.ac.uk †Members are listed in the Acknowledgements section.

Received 3 May 2016; returned 9 June 2016; revised 21 July 2016; accepted 25 July 2016

**Background:** Darunavir is considered to have a high genetic barrier to resistance. Most darunavir-associated drug resistance mutations (DRMs) have been identified through correlation of baseline genotype with virological response in clinical trials. However, there is little information on DRMs that are directly selected by darunavir in clinical settings.

Objectives: We examined darunavir DRMs emerging in clinical practice in the UK.

**Patients and methods:** Baseline and post-exposure protease genotypes were compared for individuals in the UK Collaborative HIV Cohort Study who had received darunavir; analyses were stratified for PI history. A selection analysis was used to compare the evolution of subtype B proteases in darunavir recipients and matched PI-naive controls.

**Results:** Of 6918 people who had received darunavir, **386** had resistance tests pre- and post-exposure. Overall, 2.8% (11/386) of these participants developed emergent darunavir DRMs. The prevalence of baseline DRMs was 1.0% (2/198) among PI-naive participants and 13.8% (26/188) among PI-experienced participants. Emergent DRMs developed in 2.0% of the PI-naive group (4 mutations) and 3.7% of the PI-experienced group (12 mutations). Codon 77 was positively selected in the PI-naive darunavir cases, but not in the control group.

**Conclusions:** Our findings suggest that although emergent darunavir resistance is rare, it may be more common among PI-experienced patients than those who are PI-naive. Further investigation is required to explore whether codon 77 is a novel site involved in darunavir susceptibility.



### ARV RESISTANCE MUTATIONS IN PATIENTS RECEIVING A WHO TDF-CONTAINING 1ST-LINE REGIMEN

Rhee SY<sup>1</sup>, Gupta RK<sup>2</sup>, Shafer RW<sup>1</sup> and TenoRes Study Group <sup>1</sup>Division of Infectious Diseases, Stanford University; <sup>2</sup>UCL, Department of Infection, London, UK



#### Table 1. Summary of 2,873 study individuals with virological failure on a first-line TDF-containing regimen according to treatment regimen, region and subtype

| Characteristics      | Percentage (n)<br>In 2,873 individuals |
|----------------------|----------------------------------------|
| NRTI received        |                                        |
| FTC                  | 36% (1,047)                            |
| 3TC                  | 64% (1,826)                            |
| NNRTI received       |                                        |
| NVP                  | 21% (611)                              |
| EFV                  | 79% (2,262)                            |
| LMIC resident        |                                        |
| Sub-Saharan Africa   | 56% (1,617)                            |
| South/Southeast Asia | 15% (436)                              |
| Latin America        | 1% (18)                                |
| UIC resident         |                                        |
| Europe               | 22% (637)                              |
| North America        | 6% (165)                               |
| Subtype              |                                        |
| C                    | 53% (1,524)                            |
| В                    | 20% (561)                              |
| CRF01_AE             | 13% (365)                              |
| G                    | 5% (135)                               |
| A                    | 4% (110)                               |
| Other                | 6% (178)                               |

13 TDF-associated mutations, the most commonly occurring mutations included K65R (occurring in 40% of individuals), S68G/N (21%), Y115F (12%), K70E/Q/T (11%), A62V (10%), and L74I (6%).

## Drug naïves

### Baseline characteristics and efficacy results of main ARV studies in HIV naive pts

|              |       | pVL (median) | VL>5 log | CD4 median | CD4<200 |     |
|--------------|-------|--------------|----------|------------|---------|-----|
| CASTLE       | ATV/r | 5.0          | 51%      | 205        | 47%     |     |
|              | LPV/r | 5.0          | 47%      | 204        | 48%     |     |
| ACTG5202     | ATV/r | 4.6          | 43%      | 230        | 44%     |     |
|              | EFV   | 4.7          | 43%      | 230        | 42%     |     |
| ARTEMIS      | DRV/r | 4.9          | 34%      | 228        | 41%     |     |
|              | LPV/r | 4.8          | 34%      | 218        | 42%     |     |
| CTADA DV     | RAL   | 5.1          | 55%      | 212        | 47%     |     |
| <br>STARMIKK | EFV   | 5.0          | 51%      | 204        | 48%     |     |
| 102          | EVG/c | 4.7          | 34%      | 391        | 12%     |     |
| 102          | EFV   | 4.8          | 33%      | 382        | 14%     | 14% |
| 103          | EVG/c | 4.9          | 43%      | 364        | 15%     |     |
| 103          | ATV/c | 4.9          | 40%      | 375        | 11%     |     |
| SINCLE       | DTG   | 4.7          | 32%      | 335        | 14%     |     |
| SINGLE       | EFV   | 4.7          | 31%      | 339        | 14%     |     |
| SPRING 2     | DTG   | 4.5          | 28%      | 359        | 13%     |     |
| SPRING-2     | RAL   | 4.6          | 28%      | 362        | 12%     |     |
| FLAMINCO     | DTG   | 4.5          | 25%      | 390        | 10%     |     |
| FLAMINGO     | DRV/c | 4.5          | 25%      | 400        | 10%     |     |
|              | RAL   | 4.7          | 32%      | 304        | 31%     |     |
| ACTG5257     | ATV/c | 4.6          | 32%      | 309        | 29%     |     |
|              | DRV/c | 4.6          | 28%      | 310        | 29%     |     |

#### A Antinori, ICAR 2016

### Why ARV resistance testing in ARVnaïve patients



Risk of virological failure according to patient groups

- First cART started from 1998 onward
  - 10,056 patients from 25 cohorts
    - 90.5% had
       HIV without
       TDR
    - 4.7% had at least one mutation but received fullyactive cART
    - 4.8% had at least one mutation and resistance to at least one drug

#### Wittkop, Lancet Infec Dis 2011

### Why ARV resistance testing in ARVnaïve patients



Adjusted HRs in all patients and patients starting a regimen containing two NRTIs plus either one NNRTI or one ritonavir-boosted protease inhibitor

#### Wittkop, Lancet Infec Dis 2011

#### The Role of Baseline HIV-1 RNA, Drug Resistance, and Regimen Type as Determinants of Response to First-Line Antiretroviral Therapy

Antonio Di Biagio,<sup>1</sup> Stefano Rusconi,<sup>2</sup>\* Angela Marzocchetti,<sup>3</sup> Alessio Signori,<sup>4</sup> Irene Schiavetti,<sup>4</sup> Bianca Bruzzone,<sup>5</sup> Laura Monno,<sup>6</sup> Grazia Punzi,<sup>6</sup> Maria Grazia Colao,<sup>7</sup> Giovanni Penco,<sup>8</sup> Maurizio Zazzi,<sup>9</sup> Andrea De Luca,<sup>3,10</sup> and on behalf of the ARCA Collaborative Group

Response Factors in HIV+ pts With High HIV-1 RNA

1651

|                             | Univaria           | te              | Multivaria        | te*     |
|-----------------------------|--------------------|-----------------|-------------------|---------|
|                             | HR (95 % CI)       | <i>P</i> -value | HR (95% CI)       | P-value |
| Baseline HIV RNA (copies/r  | nl)                |                 |                   |         |
| <100,000                    | 1.00 (Ref)         | <0.001          | 1.00              | < 0.001 |
| 100,000-499,999             | 0.73 (0.64-0.83)   |                 | 0.76 (0.65-0.88)  |         |
| <u></u>                     | 0.67 (0.56 0.79)   |                 | 0.52 (0.42 0.64)  |         |
| wGSS                        |                    |                 |                   |         |
| $\geq 3$                    | 1.00 (Ref)         | 0.05            | 1.00 (Ref)        | 0.003   |
| <3                          | 0.74 (0.54-1.00)   |                 | 0.58 (0.40-0.83)  |         |
| NKTI backbone of initial re | gimen              |                 |                   |         |
| TDF/FTC                     | 1.00 (Ref)         | 0.021           | 1.00 (Ref)        | 0.73    |
| ABC/3TC                     | 1.17(0.98 - 1.39)  |                 | 1.07(0.88 - 1.30) |         |
| ZDV/3TC                     | 0.91 (0.79 - 1.04) |                 | 1.04(0.84 - 1.28) |         |
| Other                       | 0.86(0.71 - 1.03)  |                 | 1.16(0.88 - 1.54) |         |
| Gender                      |                    |                 |                   |         |
| Male vs. female             | 0.84(0.73-0.96)    | 0.008           | 0.76 (0.64–0.90)  | 0.001   |
| 3rd drug of initial regimen |                    |                 |                   |         |
| bPI                         | 1.00 (Ref)         | 0.038           | 1.00              | < 0.001 |
| NNRTI                       | 0.96 (0.85 - 1.09) |                 | 0.98(0.83 - 1.14) |         |
| INI                         | 2.02 (1.23-3.31)   |                 | 3.23(1.84 - 5.68) |         |
| Other                       | 1.02 (0.80-1.32)   |                 | 1.32(0.96 - 1.82) |         |

TABLE II. Variables Associated With Virological Success

Time to achieve HIV RNA <50 copies/ml. Univariate and multivariate Cox regression (N = 1,305).

Ref, reference category for interpretation of odds-ratios (OR); wGSS, weighted genotypic susceptibility score; NRTI, nucleoside reverse transcriptase inhibitors; TDF/FTC, tenofovir/emtricitabine; ABC/3TC, abacavir/lamivudine; ZDV/3TC, zidovudine/lamivudine; bPI, boosted protease inhibitors; NNRTI, non-nucleoside reverse transcriptase inhibitors; INI, integrase inhibitor.

\*Variables were mutually adjusted in the multivariate model that also included transmission mode, presence of transmitted drug resistance, baseline CD4<sup>+</sup> and viral subtype.

# Andamento resistenze primarie nel database ARCA



N pts. 13 48 80 64 50 76 123 193 291 421 445 477 420 493 391 242 243 260 194 177 78

#### Courtesy of Maurizio Zazzi, 2017

### **HIV DR mainly involves NNRTIs**



Based on 2 prospective cohorts of IDUs in Vancouver followed 1996-2015 N=573 (18% with recent HIV infection)

#### Socias, CID 2017

### Low-Frequency HIV-1 Drug Resistance Mutations and Risk of NNRTI-Based Antiretroviral Treatment Failure – *A systematic review and pooled analysis*



Kaplan-Meier Curves for Proportion of Patients Without Virologic Failure by Presence of Drug-Resistant HIV-1 Minority Variants

- 10 studies, 985 patients, 187 with minority drug resistance mutations (mDRMs)
  - mDRMs associated with an increased risk of virologic failure (HR = 2.3; 95% CI 1.7-3.3; P<.001) after controlling for medication adherence, race/ethnicity, baseline CD4 cell count, and plasma HIV-1 RNA levels

#### Risk most strongly associated with NNRTI mDRMs

Dose-dependent increased risk of virologic failure found in participants with a higher proportion or quantity of mDRMs

### Li, JAMA 2011

### Rare HIV variants with linked dual-class resistance are associated with ART failure

### **Study Design/Sample Collection**



### Valerie F Boltz et al., CROI 2018 - Boston, poster 536

### Rare HIV variants with linked dual-class resistance are associated with ART failure

| Trial | Donor<br>ID | sdNVP  | cART<br>outcome | Total #<br>genomes<br>obtained | Linked mutations conferring<br>dual-class resistance<br>(% frequency) | Linked mutations conferring<br>single-class resistance<br>(% frequency) | Population genotype<br>at failure |                |  |  |  |  |  |  |  |  |  |  |  |  |         |       |      |                  |                |
|-------|-------------|--------|-----------------|--------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------|----------------|--|--|--|--|--|--|--|--|--|--|--|--|---------|-------|------|------------------|----------------|
|       | T1F03       |        |                 | 4,687                          | 65R/181C (0.04), 184I/103N (0.02)                                     | 101E/103N(0.02), 103N/190E (0.02)                                       | 181C, 184V                        |                |  |  |  |  |  |  |  |  |  |  |  |  |         |       |      |                  |                |
|       | T1F04       |        |                 | 13,747                         | 184I/190E (0.007)                                                     | none                                                                    | 65R, 103N, 181C, 184V             |                |  |  |  |  |  |  |  |  |  |  |  |  |         |       |      |                  |                |
|       | T1F05       |        |                 | 20,327                         | none                                                                  | 103N/190A (0.005)                                                       | 103N, 181C, 184V, 190A            |                |  |  |  |  |  |  |  |  |  |  |  |  |         |       |      |                  |                |
|       | T1F07       |        |                 | 31,531                         | 184I/103N (0.003), 184V/103N (0.003)                                  | 181C/103N (0.003), 103N/190A (0.006)                                    | 103N, 181C, 184V                  |                |  |  |  |  |  |  |  |  |  |  |  |  |         |       |      |                  |                |
|       | T1F08       |        | Failura         | 27,132                         | 184I/103N (0.004)                                                     | none                                                                    | 103N, 106M, 184I                  |                |  |  |  |  |  |  |  |  |  |  |  |  |         |       |      |                  |                |
|       | T1F09       |        | Fallure         | 16,373                         | none                                                                  | 100I/103N (0.006), 103N/190E (0.006)                                    | 181C, 184V                        |                |  |  |  |  |  |  |  |  |  |  |  |  |         |       |      |                  |                |
| 1     | T1F18       | 1      |                 | 12,692                         | 65R/103N (0.008)                                                      | none                                                                    | Not Done                          |                |  |  |  |  |  |  |  |  |  |  |  |  |         |       |      |                  |                |
|       | T1F23       | Yes    |                 | 12,155                         | 103N/184I (0.008), 184I/190E (0.008)                                  | none                                                                    | 103N                              |                |  |  |  |  |  |  |  |  |  |  |  |  |         |       |      |                  |                |
|       | T1F44       |        |                 | 44,124                         | 103N/184I (0.002), 184I/190E (0.005)                                  | none                                                                    | 65R, <mark>103N</mark> , 181C     |                |  |  |  |  |  |  |  |  |  |  |  |  |         |       |      |                  |                |
|       | T1F47       |        |                 | 57,278                         | 184I/190E (0.002)                                                     | none                                                                    | 181C, 184V                        |                |  |  |  |  |  |  |  |  |  |  |  |  |         |       |      |                  |                |
|       | T1S12       |        |                 | <mark>6,</mark> 080            | none                                                                  | 101E/190A (0.03)                                                        | Not applicable                    |                |  |  |  |  |  |  |  |  |  |  |  |  |         |       |      |                  |                |
|       | T1S26       | Succes |                 | 13,861                         | 184I/190E (0.007)                                                     | none                                                                    | Not applicable                    |                |  |  |  |  |  |  |  |  |  |  |  |  |         |       |      |                  |                |
|       | T1S39       |        |                 | ]                              |                                                                       |                                                                         |                                   |                |  |  |  |  |  |  |  |  |  |  |  |  | Success | 2,496 | none | 101E/190A (0.04) | Not applicable |
|       | T1S40       |        |                 |                                | 4,998                                                                 | 103N/184I (0.02)                                                        | none                              | Not applicable |  |  |  |  |  |  |  |  |  |  |  |  |         |       |      |                  |                |
|       | T1S58       |        |                 | 20,085                         | none                                                                  | 100I/190E (0.005)                                                       | Not applicable                    |                |  |  |  |  |  |  |  |  |  |  |  |  |         |       |      |                  |                |
|       |             |        |                 |                                |                                                                       |                                                                         |                                   |                |  |  |  |  |  |  |  |  |  |  |  |  |         |       |      |                  |                |
|       | T2F17       |        | Failura         | 18,214                         | 184I/190E (0.005)                                                     | none                                                                    | 65R, 106M, 181C, 184V             |                |  |  |  |  |  |  |  |  |  |  |  |  |         |       |      |                  |                |
| 2     | T2F23       | No     | Fallure         | 5,819                          | 103N/184I (0.02)                                                      | 103N/190A (0.16)                                                        | 65R, <mark>103N</mark> , 181C     |                |  |  |  |  |  |  |  |  |  |  |  |  |         |       |      |                  |                |
| 2     | T2S43       | 110    | Succoss         | 25,918                         | 184I/190E (0.004)                                                     | none                                                                    | Not applicable                    |                |  |  |  |  |  |  |  |  |  |  |  |  |         |       |      |                  |                |
|       | T2S48       |        | Success         | 36,814                         | 184I/190E (0.003)                                                     | none                                                                    | Not applicable                    |                |  |  |  |  |  |  |  |  |  |  |  |  |         |       |      |                  |                |

### Valerie F Boltz et al., CROI 2018 - Boston, poster 536

### **HIV DR mainly involves NNRTIs**

- Reasons why NNRTI PDR still remains at >5% level
  - NNRTI widely used for years
  - Low genetic barrier, except for the rarely used etravirine
  - Limited to no loss of fitness for most NNRTI mutants

### Rilpivirine and Doravirine have complementary efficacies against NNRTI-Resistant HIV-1 mutants



JAcquir Immune Defic Syndr. 2016 August 15; 72(5): 485-491

### **Transmitted INSTI resistance cases**

| Case<br>report  | Age/sex | Country   | Risk group   | IN muts     | Other muts                                          |
|-----------------|---------|-----------|--------------|-------------|-----------------------------------------------------|
| Boyd<br>2011    | 47/F    | US        | Heterosexual | N155H       | PR: L33F M36L Q58E T74P<br>RT: K103N                |
| Young<br>2011   | 53/M    | US        | MSM          | Q140S Q148H | PR: V32I M46I V82A L90M<br>RT: K70KR K103N V106A    |
| Volpe<br>2015   | 40/M    | US        | ?            | Q148H       | PR: V82A<br>RT: M41L D67N L74V<br>K101E Y181C G190S |
| Zoufaly<br>2016 | 30/M    | Austria   | ?            | F121Y       | None                                                |
| Rafiei<br>2017  | 28/F    | Australia | Heterosexual | Y143HY      | None                                                |



POSTER DISCUSSION Basic science and virology Is transmitted drug resistance to integrase inhibitors becoming a concern in Italy? A new case report

> *Maria M. Santoro, PhD University of Rome "Tor Vergata", Italy*

Resistance mutations PI: L63P NRTI: T215S NNRTI: V108VI E138G H221Y M230L INT: G140S Q148H





### Integrase DR testing in ARV-naïves



- Survey on HIV drug resistance testing in Italy
- 131 centers, 95 (72.5%) responses
- 14/95 (14.7%) centers do not request resistance tests

#### Lo Caputo et al., ICAR 2017 Siena

### Two ph. III trials in naïve pts: BIC/FTC/TAF vs DTG/ABC/3TC or DTG+FTC/TAF

#### Screening Visit RT/PR Genotype

|       | Drug                |                           | Drug GENESEQ <sup>TM</sup>                    |       | ASSESSMENT*         |  |  |
|-------|---------------------|---------------------------|-----------------------------------------------|-------|---------------------|--|--|
|       | Generic Name        | Brand Name                | Drug Resistance Associated Mutations Detected | Drug  |                     |  |  |
| E     | Abacavir            | Ziagen                    | K70R                                          | ABC   | Sensitive           |  |  |
|       | Didanosine          | Videx                     | None                                          | ddl   | Sensitive           |  |  |
| Ľ.    | Emtricitabine       | Emtriva                   | K70R                                          | FTC   | Sensitive           |  |  |
| z     | Lamivudine          | Epivir                    | K70R                                          | 3TC   | Sensitive           |  |  |
|       | Stavudine           | Zerit                     | K70R                                          | d4T   | Sensitive           |  |  |
|       | Tenofovir           | Viread                    | K70R                                          | TFV   | Sensitive           |  |  |
|       | Zidovudine          | Retrovir                  | K70R                                          | ZDV   | Resistance Possible |  |  |
|       |                     |                           |                                               |       |                     |  |  |
|       | Delavirdine         | Rescriptor                | K103N                                         | DLV   | Resistant           |  |  |
| NNRTI | Efavirenz Sustiva   |                           | K103N                                         | EFV   | Resistant           |  |  |
|       | Etravirine          | Intelence                 | None                                          | ETR   | Sensitive           |  |  |
|       | Nevirapine Viramune |                           | K103N                                         | NVP   | Resistant           |  |  |
|       | Rilpivirine         | Edurant                   | K103N                                         | RPV   | Sensitive           |  |  |
|       |                     |                           |                                               |       |                     |  |  |
|       | Atazanavir          | Reyataz                   | None                                          | ATV   | Sensitive           |  |  |
|       | Alazanavii          | Reyataz / r‡              | None                                          | ATV/r | Sensitive           |  |  |
|       | Darunavir           | Prezista / r‡             | None                                          | DRV/r | Sensitive           |  |  |
|       | Fosamprenavir       | Lexiva / r‡               | None                                          | AMP/r | Sensitive           |  |  |
| π     | Indinavir           | Crixivan / r#             | None                                          |       | Sensitive           |  |  |
|       | Lopinavir           | Kaletra                   | None                                          | LPV/r | Sensitive           |  |  |
|       | Nelfinavir          | Viracept                  | None                                          | NEV   | Sensitive           |  |  |
|       | Ritonavir           | Norvir                    | None                                          | RTV   | Sensitive           |  |  |
|       | Saquinavir          | Invirase / r <sup>‡</sup> | None                                          | SQV/r | Sensitive           |  |  |
|       | Tipranavir          | Aptivus / r <sup>‡</sup>  | None                                          | TPV/r | Sensitive           |  |  |

### Baseline Visit RT/PR Genotype and Phenotype

|      | Drug                  |               |                               | P              | PHENOSENSE <sup>TM</sup> SUSCEPTIBILITY   |                |             | Net Assessment      |  |  |
|------|-----------------------|---------------|-------------------------------|----------------|-------------------------------------------|----------------|-------------|---------------------|--|--|
|      | Generic<br>Name       | Brand<br>Name | Cutoffs<br>(lower -<br>upper) | Fold<br>Change | Increasing Drug Susceptibility Decreasing | Phano<br>Sense | Gens<br>Seq |                     |  |  |
|      | Abacavir              | Ziagen        | (4.5 – 6.5)                   | 0.73           | <b> </b>                                  | Y              | Y           | Sensitive           |  |  |
|      | Didanosine            | Videx (       | (1.3 - 2.2)                   | 0.83           |                                           | Y              | Y           | Sensitive           |  |  |
| R    | Emtricitabine         | Emtriva       | (3.5)                         | 0.86           |                                           | Y              | Y           | Sensitive           |  |  |
| ~    | Lamivudine            | Epivir        | (3.5)                         | 0.95           |                                           | Y              | Y           | Sensitive           |  |  |
|      | Stavudine             | Zerit         | (1.7)                         | 0,88           | <b>I</b> N                                | Y              | Y           | Sensitive           |  |  |
|      | Zidovudine            | Retrovir      | (1.9)                         | 1.89           | D                                         | Y              | Р           | Partially Sensitive |  |  |
|      | Tenofovir             | Viread        | (1.4 - 4)                     | 1.06           |                                           | Y              | Y           | Sensitive           |  |  |
|      | NRTI Mutation         | ns H          | (70K/R                        |                |                                           |                |             |                     |  |  |
|      |                       |               |                               |                |                                           |                |             |                     |  |  |
| NNRT | Delavirdine           | Rescriptor    | (6.2)                         | 143            | И                                         | N              | N           | Resistant           |  |  |
|      | Efavirenz             | Sustiva       | (3)                           | 20             | l l l l l l l l l l l l l l l l l l l     | N              | N           | Resistant           |  |  |
|      | Etravirino            | Intelence     | (2.9 - 10)                    | 1.04           |                                           | Y              | Y           | Sensitive           |  |  |
|      | Nevirapine            | Viramune      | (4.5)                         | 107            | N                                         | N              | N           | Resistant           |  |  |
|      | Ripivirine            | Edurant       | (2)                           | 1.01           |                                           | Y              | Y           | Sensitive           |  |  |
|      | NNRT] Mutations K103N |               |                               |                |                                           |                |             |                     |  |  |
|      |                       |               |                               |                |                                           |                |             |                     |  |  |
|      | Atazanavir            | Reyataz       | (2.2)                         | 0,85           |                                           | Y              | Y           | Sensitive           |  |  |
|      | Atazanavir            | Reyataz /     | 4 (5.2)                       | 0.85           |                                           | Y              | Y           | Sensitive           |  |  |
|      | Darunavir             | Prezista / r  | (10-<br>90)                   | 0,59           |                                           | Y              | Y           | Sensitive           |  |  |
|      | Fosamprenavi          | r Lexîva / r‡ | (4-11)                        | 0.65           |                                           | Y              | Y           | Sensitive           |  |  |
|      | ndinavir              | Crixivan / r  | <sup>0</sup> (10)             | 0,64           |                                           | Y              | Y           | Sensitive           |  |  |
| _    | Lopinavir             | Kaletra‡      | (9-55)                        | 0.79           |                                           | Y              | Y           | Sensitive           |  |  |
| •    | Nelfinavir            | Viracept      | (3.6)                         | 0.96           |                                           | Y              | Y           | Sensitive           |  |  |
|      | Ritonavir             | Norvir        | (2.5)                         | 0.90           |                                           | Y              | Y           | Sensitive           |  |  |
|      | Saquinavir            | nvirase / n   | : (2.3 -<br>12)               | 0.70           |                                           | Y              | Y           | Sensitive           |  |  |
|      | Tipranavir            | Aptivus / rt  | (2 = 8)                       | 0.77           |                                           | Y              | Y           | Sensitive           |  |  |
|      | PI Mutations          |               | none                          |                | -                                         |                |             |                     |  |  |

#### K White et al., CROI 2018 - Boston, poster 532

### Two ph. III trials in naïve pts: BIC/FTC/TAF vs DTG/ABC/3TC or DTG+FTC/TAF

#### **Baseline Visit IN Genotype and Phenotype**



HIV-1 RNA Results for Participant with G140S/Q148H INSTI Genotypic Resistance at Baseline Treated with B/F/TAF



#### K White et al., CROI 2018 - Boston, poster 532

211 TCs, involving 1,626 (31.2%) newly diagnosed individuals, were identified. 24 TCs (11.4%) involved individuals from both North and Central Italy, suggesting an intermixing between individuals belonging from different areas.



Clusters analysis by HIV-1 TRACE

Fabeni, ICAR 2017

### The contribution of **MSM in TCs** significantly **decreased for non-B** subtypes (**2004-2016: 87.5%-33.3%, p<0.001**), while remained **stable for B subtype** (**2004-2016: 53.1%-52.8%, p=0.072**)



Fabeni, ICAR 2017

### Logistic regression confirmed that more recent diagnosis and higher CD4+ T cells were both positive predictors of TCs.

| Variables                                            | Predictors of Transmission Clusters (N=211) |                   |                  |                   |  |
|------------------------------------------------------|---------------------------------------------|-------------------|------------------|-------------------|--|
|                                                      | Crude                                       |                   | Adjust           | ed <sup>a</sup>   |  |
|                                                      | OR (95% C.I.)                               | p-value           | OR (95% C.I.)    | p-value           |  |
| Age (per 1 year increase)                            | 0.98 (0.97-0.98)                            | 5.05 <b>E-1</b> 3 | 0.98 (0.97-0.98) | 9.77E-10          |  |
| Gender (male vs female)                              | 3.06 (2.56-3.67)                            | 7.20E-34          | 1.71 (1.37-2.14) | 2.00E-06          |  |
| Subtype (B vs non-B)                                 | 1.30 (1.14-1.48)                            | 5.96 <b>E-</b> 05 | 1.20 (1.03-1.40) | 2.10E-02          |  |
| Risk factor:                                         |                                             |                   |                  |                   |  |
| MSMb                                                 | 1                                           |                   | 1                |                   |  |
| BISEX                                                | 1.19 (0.84-1.70)                            | 3.20E-01          | 1.03 (0.70-1.51) | 0.87              |  |
| HET                                                  | 0.47 (0.34-0.67)                            | 1.77 <b>E-</b> 05 | 0.78 (0.63-0.97) | 0.025             |  |
| IDU                                                  | 0.33 (0.20-0.55)                            | 1.66E-05          | 0.44 (0.28-0.68) | 2.49E-04          |  |
| Other/unknown                                        | 0.84 (0.59 <b>-</b> 1.19)                   | 0.32              | -                | -                 |  |
| Nationality (Italian vs foreign)                     | 2.88 (2.49-3.33)                            | 2.14E-45          | 2.90 (2.44-3.44) | 1.15 <b>E-</b> 33 |  |
| Year of diagnosis (per 1 year increase)              | 1.07 (1.05-1.09)                            | 6.33E-16          | 1.07 (1.05-1.10) | 5.19 <b>E-</b> 12 |  |
| Viral load at GRT (per 1 log <sub>10</sub> increase) | 0.98 (0.92-1.05)                            | 0.56              | •                | -                 |  |
| CD4 at GRT (per 50 cells increase)                   | 1.06 (1.05-1.07)                            | 2.10E-30          | 1.04 (1.03-1.05) | 6.08E-12          |  |

<sup>a</sup> Adjusted for factors with p<0.100 in univariate analysis: age and subtype. <sup>b</sup> Reference group (dummy). OR: odds ratio.

#### Fabeni, ICAR 2017

# DR & Low-Level Viremia



#### Volume 39, Issue 7 1 October 2004

### Genotypic Resistance in HIV-1–Infected Patients with Persistently Detectable Low-Level Viremia while Receiving Highly Active Antiretroviral Therapy

### Richard E. Nettles,<sup>1</sup> Tara L. Kieffer,<sup>1</sup> Rachel P. Simmons,<sup>1</sup> Joseph Cofrancesco, Jr.,<sup>1</sup> Richard D. Moore,<sup>1</sup> Joel E. Gallant,<sup>1</sup> Deborah Persaud,<sup>2</sup> and Robert F. Siliciano<sup>1,3</sup>

Departments of <sup>1</sup>Medicine and <sup>2</sup>Pediatrics, Johns Hopkins University School of Medicine, and <sup>3</sup>Howard Hughes Medical Institute, Baltimore, Maryland

**Background.** Technical limitations in the sensitivity of commercial genotyping methods may prevent clinicians from determining whether drug-resistant human immunodeficiency virus type 1 (HIV-1) is present in patients with low-level viremia. We performed ultrasensitive HIV-1 genotyping for patients with persistent plasma virus loads of 50–400 copies/mL to better define the prevalence of drug resistance and the most common resistance mutations during persistently detectable low-level viremia.

Methods. Genotyping of HIV-1 was performed with an ultrasensitive clonal genotyping method.

*Results.* We studied 21 patients who had persistent, detectable, low-level viremia for a median of 11 months. Nine (43%) of 21 patients had HIV-1 isolates with significant resistance mutations. The most common mutations were M184V, K65R, and M41L/T215Y.

*Conclusions.* The finding that clinically significant resistance mutations were present in some but not all patients with persistent viremia (range, 50–400 copies/mL) highlights the need to improve the sensitivity of current clinical assays for detection of drug resistance.



 <u>SEHERE</u> <u>consortium (I, UK,</u> <u>P, D, B, E, S)</u>

- 16,511 PR/RT sequences from 11,492 treatmentexperienced patients
- 2,500/16,511 (15.14%) test results were obtained at a viral load <1,000 copies/mL



Detection of DR in plasma RNA stratified by viremia levels

#### Santoro, CID 2014



Raltegravir genotypic susceptibility scores (GSS) according to viraemia level in samples from patients failing a raltegravir-containing regimen

#### Armenia, JAC 2015

### Drug resistance can emerge <u>during</u> persistent low-level viremia



- 48 patients (4 naive and 44 pretreated) with LLV episode with a median duration of 11 months
- Successful resistance testing at both onset and end of the LLV episode obtained for 37 patients (77%)
- 11 (30%) acquired at least 1 DRAM during the LLV period: for NRTI in 6, for NNRTI in 1, for PI in 4, and for raltegravir in 2

#### Delaugerre, PLoS ONE 2012

# Virological failures

# HIV ADR in low/middle income countries

Fig. 15: Acquired HIV drug resistance among individuals on ART (systematic literature review, 2014–2017)



Genotype data were available for a total of 3919 individuals from both "viral load and genotype cohorts" and "genotyping only cohorts". In this subgroup, the pooled estimates using a random effects model show that 70.7% were found to have any DRM.

#### WHO HIV drug resistance report - 2017

### HIV Drug Resistance Mutations in Non-B Subtypes After Prolonged Virological Failure on NNRTI-Based First-Line Regimens in Sub-Saharan Africa

Cissy Kityo, MSc,\* Jennifer Thompson, MSc,† Immaculate Nankya, PhD,\* Anne Hoppe, PhD,† Emmanuel Ndashimye, PhD,\* Colin Warambwa, MD,‡ Ivan Mambule, MBChB,§ Joep J. van Oosterhout, MD,||¶ Kara Wools-Kaloustian, MD,# Silvia Bertagnolio, MD,\*\* Philippa J. Easterbrook, MD,\*\* Peter Mugyenyi, FRCP,\* A. Sarah Walker, PhD,† and Nicholas I. Paton, MD,†‡‡ for the Europe Africa Research Network for Evaluation of Second-line Therapy (EARNEST) Trial Team

- Drug resistance mutation (DRM) patterns in patients failing NNRTI-based first-line antiretroviral therapy regimens in programs without routine viral load (VL) monitoring
- Examine intersubtype differences in DRMs
- Sequences from 787 adults/adolescents who failed an NNRTI-based first-line regimen
- DRMs were more common in subtype-C than in subtype-A and/or subtype-D

Higher rates of etravirine and rilpivirine resistance in subtype-C may limit their potential utility in salvage regimen
J Acquir Immune Defic Syndr • Volume 75, Number 2, June 1, 2017

### Resistance to TDF(/TAF) at first-line TDF/XTC/NNRTI treatment failure



Based on analysis of 1926 patients from 36 countries with treatment failure between 1998 and 2015

TENORES, Lancet Infect Dis 2016

### Time trends of INSTI resistance in treatment failing patients



Fig. 3: Prevalence of Drug Resistance

- A total of 57 persons with intermediate or high level INI resistance were identified January 2009 to ٠ October 2015
- Apparent increase in selection of mutations at integrase codons 66, 140, 148, 155 and 263 ٠
- Although the prevalence of INI resistance is increasing, INI resistance remains low in comparison ٠ to RT and PI resistance

#### Lepik, CROI 2016 & AIDS 2017

# Time trends of INSTI resistance in treatment failing patients



Fig. 4b: Newly Identified Cases of Integrase Resistance\*

| Year            | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
|-----------------|------|------|------|------|------|------|------|
| INI associated  | N=6  | N=4  | N=12 | N=8  | N=8  | N=11 | N=8  |
| with resistance | n    | n    | n    | n    | n    | n    | n    |
| Dolutegravir    | -    | -    | -    | -    | -    | -    | 3    |
| Elvitegravir    | -    | -    | -    | -    | -    | 2    | 3    |
| Raltegravir     | 6    | 3    | 9    | 8    | 7    | 7    | 2    |
| Unclassifiable  | -    | -    | 3    | -    | 1    | 2    | -    |

\* ART-treated persons contributed data in the first year INI resistance mutations conferring a total score ≥30 (Stanford HIV Drug Resistance Algorithm v.7.0.1) for at least one INI were identified.

- Until 2013, most new cases of INI resistance associated with RAL use
- In 2014 and 2015, 8/19 (42%) new INI resistance cases followed EVG or DTG use
- Five cases were associated with EVG use in treatmentexperienced persons (two 66A/I and one each 92Q, 145S, 147G)
- Three cases of emergent INI resistance during DTG therapy
  - 263K in two treatment experienced persons
  - 66I in one treatment-naïve person treated with dolutegravir-abacavirlamivudine

### Time trends in ADR in Italy



- 2009-2016 observation period
- On treatment at genotyping with HIV-1 viral load >200 copies/ml after >6 months of therapy

Lai, ICAR 2017

# Patients with a Multidrug Resistant Virus

### **HIV MDR in Italy**

Prevalence of resistance to any drug-class among ART-experienced HIV-1 infected patients over the years.



Analysis performed on 12660 sequences of protease, reverse transcriptase or integrase, from ART-experienced HIV-1 infected patients (N=6051). P-values by Chi-squared test for trend; statistically significant tests (p<0.05) are indicated in boldface. Sequences performed from 1999 to 2001 were grouped. \*Update August 2016.

#### Armenia, ICAR 2017

### Take home messages

- **DR testing** still necessary at individual and population level in **naïve** patients (beware of **TDR**)
  - Yet, INSTI DR testing is below the 5% cost/benefit threshold. To be considered the incremental use of INSTI, thus the potential increase in INSTI DR, although newer and more potent compounds may limit this phenomenon
- HIV resistance testing at LLV is possible and is able to reveal some degree of viral evolution under pharmacological pressure
- Acquired DR testing mandatory at **treatment failure [reservoir]**, advisable at every level of viremia
  - Risk of ADR highly dependent on genetic barrier and adherence
- Resistance testing still valuable in HTE patients with MDR [reservoir] to address salvage or holding regimens
  - Room for phenotyping when available

